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Abstract

We discuss an important property called the asymptotic equipartition property on empirical sequences
in reinforcement learning. This states that the typical set of empirical sequences has probability nearly
one, that all elements in the typical set are nearly equi-probable, and that the number of elements in
the typical set is an exponential function of the sum of conditional entropies if the number of time
steps is sufficiently large. The sum is referred to as stochastic complexity. Using the property we
elucidate the fact that the return maximization depends on two factors, the stochastic complexity and
a quantity depending on the parameters of environment. Here, the return maximization means that
the best sequences in terms of expected return have probability one. We also examine the sensitivity of
stochastic complexity, which is a qualitative guide in tuning the parameters of action-selection strategy,
and show a sufficient condition for return maximization in probability.

Keywords: reinforcement learning, Markov decision process, information theory, asymptotic equipar-
tition property, stochastic complexity, return maximization



1 Introduction

In information theory the weak law of large numbers is known as the asymptotic equipartition property
(AEP) which was first stated in (Shannon, 1948) and then developed by the type method in (Csiszár &
Körner, 1997; Csiszár, 1998). When a sequence of random variables is drawn many times, independently
and according to an identical probability distribution, the AEP states that there exists the typical set of
the sequences with probability nearly one, that all elements in the typical set are nearly equi-probable,
and that the number of elements in the typical set is given by an exponential function of the entropy
of the probability distribution. In addition, the number of elements in the typical set is quite small
compared to the number of possible sequences. If the AEP also holds on empirical sequences generated
from a Markov decision process (MDP) in reinforcement learning (RL), it facilitates the analysis of the
learning process since most of our attention can be focused on the typical set of the empirical sequences.
This leads us to the question of whether or not the AEP holds for an empirical sequence. The fact is that
a similar AEP holds but it is more complicated than the original AEP. Using the type method, first we
introduce an information-theoretic formulation for almost stationary ergodic MDPs in general and then
describe the AEP that holds on the empirical sequences. From the AEP, we indicate the existence of
an important factor called the stochastic complexity which consists of the sum of conditional entropies
and elucidate that the return maximization is characterized by two factors, the stochastic complexity
and a quantity which depends on the parameters of environment. Here, the return maximization means
that the probability of best sequences that yield the maximal expected return goes to probability one.
Also, useful knowledge for tuning the parameters of action-selection strategy is described by examining
the sensitivity of the stochastic complexity. Furthermore, we show that the stochastic complexity is
derived from the algorithmic complexity which was explored by Chaitin (Chaitin, 1977, 1987).

The organization of this paper is as follows. We introduce some notation and the type of empirical
sequence in Section 2. Section 3 shows the main theorems associated with the AEP. Using the AEP we
analyze the RL process in Section 4. Finally, we give some conclusions in Section 5. Appendices A and
B are the related theorems to the AEP and those proofs, respectively.

2 Preliminaries

We concentrate on the discrete-time MDP with discrete states and actions in this paper. Let S def=
{s1, s2, . . . , sI} be the finite set of states of the environment, A def= {a1, a2, . . . , aJ} be the finite set of
actions, and R0

def= {r1, r2, . . . , rK} ⊂ R be the finite set of rewards which are discrete real numbers.
Notice that |S| = I, |A| = J , and |R0| = K. We assume that elements in these sets are recognized
without error by the learner, hereinafter called the agent. We denote a time step by t. The stochastic
variables of state, action, and reward at time step t (t = 1, 2, . . . ) are written as s(t), a(t), and r(t),
respectively. The agent improves the policy by observing one-by-one each element of the empirical
sequence that is generated by the interactions between the agent and the environment, as shown in
Figure 1.

[Figure 1 about here.]

Now let us consider the empirical sequence of n time steps,

s(1), a(1), s(2), r(2), a(2), . . . , s(n), r(n), a(n), r(n+ 1).

Let r(n + 1) = r(1) for notational convenience and let x = {s(t), a(t), r(t)}nt=1 denote the empirical
sequence of n time steps. The state sequence, action sequence, and reward sequence of the empirical
sequence x ∈ (S×A×R0)n are denoted by s = {s(t)}nt=1, a = {a(t)}nt=1, and r = {r(t)}nt=1, respectively.
We use the term return to express the sum of rewards.
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Let qi
def= Pr(s(1) = si) be the initial probability distribution and q def= {q1, q2, . . . , qI} where qi > 0

for all i. The empirical sequence is drawn according to an ergodic MDP specified by the following
two conditional probability distribution matrices. Henceforth, the conditional probability distribution
matrix is simply called the matrix. The policy matrix which the agent determines is an I × J matrix
defined by

Γπ def=

⎛
⎜⎜⎜⎝
p11 p12 . . . p1J

p21 p22 . . . p2J

...
...

. . .
...

pI1 pI2 . . . pIJ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P(1)

P(2)

...
P(I)

⎞
⎟⎟⎟⎠ , (1)

where pij
def= Pr(a(t) = aj |s(t) = si). According to this matrix, the agent selects an action in a state

at each time step. Note that Γπ is actually time-varying because the agent improves the policy in the
process of RL. However, Γπ tends to be constant as the policy goes to be optimal by the learning. The
state transition matrix of the environment is an IJ × IK matrix defined by

ΓT def=

⎛
⎜⎜⎜⎝
p1111 p1112 . . . p11IK

p1211 p1212 . . . p12IK

...
...

. . .
...

pIJ11 pIJ12 . . . pIJIK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P(11)

P(12)

...
P(IJ)

⎞
⎟⎟⎟⎠ , (2)

where piji′k
def= Pr(s(t+1) = si′ , r(t+1) = rk|s(t) = si, a(t) = aj). The agent does not know the matrix

ΓT of the environment but can estimate it by observing the results for an action. We assume that ΓT is
constant and that for simplicity of analysis Γπ is temporarily fixed for n time steps where n is sufficiently
large. For notational simplicity we define Γ def= (Γπ,ΓT). Since MDPs are characterized by the finite
sets, the initial probability distribution, and the matrices, we denote the MDP by M(S,A,R0,q,Γ).

2.1 Type of Empirical Sequence

Let ni (ni ≤ n) denote the number of times that a state si ∈ S occurs in the empirical sequence
of n time steps, x = (s,a, r) ∈ (S × A × R0)n. In a similar manner, let nij (nij ≤ ni) be the
number of occurrences of t such that (s(t), a(t)) = (si, aj) ∈ S × A in the empirical sequence. With
an additional “cyclic” convention that s(n), a(n), and r(n + 1) = r(1) precede s(1), a(1), and r(2),
let niji′k (niji′k ≤ nij) denote the number of occurrences of t such that (s(t), a(t), s(t + 1), r(t+ 1)) =
(si, aj , si′ , rk) ∈ S × A × S × R0 in the empirical sequence. Note that the cyclic convention is for
simplicity of development. The discussions in this paper strictly hold even if we do not assume this
convention. The relationship among the non-negative numbers n, ni, nij , and niji′k is expressed as

n =
I∑

i=1

ni =
I∑

i=1

J∑
j=1

nij =
I∑

i=1

J∑
j=1

I∑
i′=1

K∑
k=1

niji′k. (3)

Now we define the type of si ∈ S by
fi =

ni

n
. (4)

The type is generally called the empirical distribution (Han & Kobayashi, 2002, p. 42) because we can
regard each sequence as a sample from a stochastic process. Also, the joint type of (si, aj) ∈ S × A is
defined as

fij =
nij

n
. (5)
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Let us denote all the types and the joint types by

FS
def= (f1, f2, . . . , fI), (6)

and

FSA
def=

⎛
⎜⎜⎜⎝
f11 f12 . . . f1J

f21 f22 . . . f2J

...
...

. . .
...

fI1 fI2 . . . fIJ

⎞
⎟⎟⎟⎠ , (7)

respectively. In this case we say that the state sequence s and the state-action sequence (s,a) have the
type FS and the joint type FSA, respectively.

Conditional Type Relative to Policy If ni > 0 for all i, then the conditional type gij of (si, aj) ∈
S ×A given a state sequence s ∈ Sn is defined as

nij
def= gijni. (8)

However, if there exists i such that ni = 0, then we can not uniquely determine the conditional type (see
Example 2.1). To avoid such a case, we consider the set of action sequences given any state sequence s
having the type FS and an I × J matrix Φπ : S → A expressed as

Φπ def=

⎛
⎜⎜⎜⎝
g11 g12 . . . g1J

g21 g22 . . . g2J

...
...

. . .
...

gI1 gI2 . . . gIJ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

G(1)

G(2)

...
G(I)

⎞
⎟⎟⎟⎠ . (9)

In short, nij is decided by ni and gij for every i, j. The set of action sequences, which is uniquely
determined in this way, is referred to as Φπ-shell (Csiszár & Körner, 1997, p. 31) of s and denoted by
Cn(Φπ, s). The entire set of possible matrices Φπ for any state sequence with the type FS is simply
written as Λπ

n.

Example 2.1 Let I = J = 2, the state sequence s = (s1, s1, s1, s1) ∈ S4, and the action sequence
a = (a1, a1, a2, a2) ∈ A4. Then, from the definition of (8) we obtain g11 = g12 = 1/2. Also, because
of n2 = 0, letting g21 = ω where 0 ≤ ω ≤ 1 we have g21 = ω and g22 = 1 − ω. Therefore, we can not
uniquely determine the conditional type.

Example 2.2 (Φπ-shell) Let I = J = 2, again. For the state sequence s = (s1, s1, s1, s2) ∈ S4 with
the type FS = (3/4, 1/4) and the matrix,

Φπ =
(
g11 g12
g21 g22

)
=

(
2/3 1/3
0 1

)
, (10)

the Φπ-shell of s is C4(Φπ, s) = {(a1, a1, a2, a2), (a1, a2, a1, a2), (a2, a1, a1, a2)}.

Conditional Markov Type Relative to State Transition In a slightly different manner we need
to deal with the conditional Markov type1. We consider the set of state-reward sequences such that the

1For Markov type, see (Davisson, Longo, & Sgarro, 1981).
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joint type is FSA given any action sequence and an IJ × IK matrix ΦT : S × A → S × R0 designated
by

ΦT def=

⎛
⎜⎜⎜⎝
g1111 g1112 . . . g11IK

g1211 g1212 . . . g12IK

...
...

. . .
...

gIJ11 gIJ12 . . . gIJIK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

G(11)

G(12)

...
G(IJ)

⎞
⎟⎟⎟⎠ . (11)

The set of state-reward sequences is referred to as ΦT-shell and denoted by Cn(ΦT,FSA). The entire
set of possible matrices ΦT such that the joint type is FSA for any action sequence is simply written
as ΛT

n .
For simplicity, we define Φ def= (Φπ,ΦT) and Λn

def= Λπ
n × ΛT

n . The set of empirical sequences
that consists of the Φπ-shell and ΦT-shell is called the Φ-shell and denoted by Cn(Φ,FS ,FSA). The
structure of the Φ-shell is depicted in Figure 2. When a joint-type FSA and a matrix ΦT are given,
the ΦT-shell having the type FS is uniquely determined and then the combination of each element in
the ΦT-shell and a matrix Φπ produces the Φπ-shell. Therefore, the Φ-shell is uniquely determined.
Notice that

|Cn(Φ,FS ,FSA)| =
∑

(s′,r′)∈Cn(ΦT,FSA)

|Cn(Φπ, s′)|. (12)

In this case we write that the empirical sequence has the conditional type matrix Φ.

[Figure 2 about here.]

2.2 V-typical and W-typical sequences

In order to prove the AEP on empirical sequences, we have to introduce the V-typical sequence with
respect to the state sequences and the W-typical sequences with respect to the state-action sequences.

Definition 2.1 (V-typical and W-typical sequences) We assume the existence of the following
two unique stationary probability distributions,

V def= (v1, v2, . . . , vI), (13)

W def=

⎛
⎜⎜⎜⎝
w11 w12 . . . w1J

w21 w22 . . . w2J

...
...

. . .
...

wI1 wI2 . . . wIJ

⎞
⎟⎟⎟⎠ , (14)

and assume that FS and FSA tend to V and W as n→∞, respectively. The stationary probability dis-
tributions are uniquely determined by the MDP, M(S,A,R0,q,Γ). In this case, there exists a sequence
of positive κn such that κn → 0 as n→∞, and if the type FS of a state sequence s ∈ Sn satisfies

D(FS‖V) =
I∑

i=1

fi log
fi

vi
≤ κn, (15)

then we call the state sequence a V-typical sequence. The set of V-typical sequences is denoted by
Cn

κn
(V) def= {s ∈ Sn|D(FS‖V) ≤ κn}. In a similar manner, there exists a sequence of positive ξn such

that ξn → 0 as n→∞, and if

D(FSA‖W) =
I∑

i=1

J∑
j=1

fij log
fij

wij
≤ ξn (16)
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holds, then the state-action sequences (s,a) ∈ (S × A)n are referred to as W-typical sequences. We
define the set of W-typical sequences as Cn

ξn
(W) def= {(s,a) ∈ (S ×A)n|D(FSA‖W) ≤ ξn}.

In the rest of this section, we will introduce a few basic conventions in information theory (Cover
& Thomas, 1991, Chapter 2). Let us use the convention that 0 log 0 = 0 henceforth. The function H
indicates the entropy. For instance, we write the entropy of P(i) in (1) for any i as

H(P(i)) = −
J∑

j=1

pij log pij , (17)

and describe its conditional entropy given V as

H(Γπ|V) =
I∑

i=1

viH(P(i)). (18)

Also, as used in (15) and (16), the divergence is designated by the function D. The divergence between
Φπ and Γπ given FS is denoted as

D(Φπ‖Γπ|FS) =
I∑

i=1

fiD(G(i)‖P(i)), (19)

where

D(G(i)‖P(i)) =
J∑

j=1

gij log
gij

pij
. (20)

3 Asymptotic Equipartition Property

In this section, it is elucidated that the empirical sequences generated from almost stationary ergodic
MDPs have the AEP. Now we are in a position to give the definitions of the typical sequence and the
typical set of empirical sequences, which will lead us to show that the AEP holds on empirical sequences.

Definition 3.1 (Γ-typical sequence and Γ-typical set) If the matrix Φ ∈ Λn of the conditional
types with respect to an empirical sequence x = (s,a, r) ∈ (S ×A× R0)n satisfies

D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) ≤ λn, (21)

for any matrix Γ and positive number λn, then the empirical sequence is called a Γ-typical sequence.
The set of such empirical sequences is also called the Γ-typical set and denoted by Cn

λn
(Γ). That is,

Cn
λn

(Γ) is given by

Cn
λn

(Γ) def=
⋃

Φ∈Λn:

D(Φπ‖Γπ|FS)+D(ΦT‖ΓT|FSA)≤λn

Cn(Φ,FS ,FSA). (22)

Figure 3 illustrates the concept of Definition 3.1. The matrix Φ of the Γ-typical sequence exists in the
neighborhood of Γ, shown by the shaded circle on the manifold spanned by Γ.

[Figure 3 about here.]

From the theorems, presented in Appendix A, we can derive the following three theorems regarding
the AEP on empirical sequences. We begin with the theorem similar to (Wolfowitz, 1978).
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Theorem 3.1 (Probability of the Γ-typical set) If λn → 0 as n→∞ and λn satisfies

λn − (IJ + I2JK) log(n+ 1) + log I − log ν
n

> 0, (23)

where
ν

def= min
1≤i,i′≤I,1≤j≤J,1≤k≤K:piji′k>0

piji′k, (24)

there exists a sequence {εn(I, J,K, λn)} such that εn(I, J,K, λn)→ 0 and then

Pr
(Cn

λn
(Γ)

)
= 1− εn(I, J,K, λn). (25)

Note that nλn →∞ because of (23). The proof is given in Appendix B.4. This theorem implies that the
probability of the Γ-typical set asymptotically goes to one independently of the underlying probabilistic
structures, Γπ and ΓT. Next, the following theorem indicates the fact that all elements in the Γ-typical
set are nearly equi-probable.

Theorem 3.2 (Equi-probability of the Γ-typical sequence) If s ∈ Cn
κn

(V), (s,a) ∈ Cn
ξn

(W),
x ∈ Cn

λn
(Γ) such that κn → 0, ξn → 0, λn → 0 as n→∞, then there exists a sequence {ρn(I, J,K, κn, ξn, λn)}

such that
ρn(I, J,K, κn, ξn, λn)→ 0.

Then,
log ν
n
− ρn ≤ − 1

n
log Pr(x)− {

H(Γπ|V) + H(ΓT|W)
} ≤ − log μ

n
+ λn + ρn, (26)

where ν is given in (24) and
μ

def= min
1≤i≤I:qi>0

qi. (27)

This theorem is proved in Appendix B.5. Finally, we present the theorem which implies that the number
of elements in the Γ-typical set is written as an exponential function of the sum of the conditional
entropies.

Theorem 3.3 (Bound of the number of the Γ-typical sequences) If s ∈ Cn
κn

(V), (s,a) ∈ Cn
ξn

(W),
x ∈ Cn

λn
(Γ) such that κn → 0, ξn → 0, λn → 0 as n → ∞, then there exist two sequences,

{ζn(I, J,K, κn, ξn, λn)} and {ηn(I, J,K, κn, ξn, λn)}, such that

ζn(I, J,K, κn, ξn, λn)→ 0, ηn(I, J,K, κn, ξn, λn)→ 0,

respectively. Then, the number of elements in the Γ-typical set is bounded by

exp
[
n
{
H(Γπ|V) + H(ΓT|W)− ζn

}] ≤ |Cn
λn

(Γ)| ≤ exp
[
n
{
H(Γπ|V) + H(ΓT|W) + ηn

}]
. (28)

The proof is given in Appendix B.6. The ratio of the number of Γ-typical sequences to that of all
empirical sequences x ∈ (S ×A× R0)n of n time steps is

|Cn
λn

(Γ)|
(IJK)n

≤ exp
[
n
{
H(Γπ|V) + H(ΓT|W) + ηn − log I − log J − logK

}]→ 0, (29)

as n→∞, when the probability distributions of Γπ and ΓT are not uniform distributions, that is,

H(Γπ|V) < log I, (30)

H(ΓT|W) < log J + logK. (31)

Hence, we can say that the Γ-typical set is quite small in comparison to the set of all empirical sequences.
Nonetheless, their existence is important enough because the total probability is almost one.
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Remark 3.1 The equation (28) shows

|Cn
λn

(Γ)| .= exp
[
n
{
H(Γπ|V) + H(ΓT|W)

}]
, (32)

where the notation .= indicates that both sides are equal to the first order in the exponent, namely,

lim
n→∞

1
n

log |Cn
λn

(Γ)| = lim
n→∞

1
n

log exp
[
n
{
H(Γπ|V) + H(ΓT|W)

}]
, (33)

(Cover & Thomas, 1991, p. 55).

4 The Role of Stochastic Complexity in Reinforcement Learn-
ing

The agent learns the optimal policy via return maximization (RM) in RL. A number of studies have
been made on the analysis of the process of RM (Jaakkola, Jordan, & Singh, 1994; Kushner & Yin, 1997;
Singh, Jaakkola, Littman, & Szepesvári, 2000), but most of the studies focus on concrete stochastic
approximation methods such as temporal difference (TD) learning. The aim here is to explore a more
general mechanism of RM, how the probability of the subset of best sequences in terms of expected
return is maximized, from a viewpoint of Shannon’s ideas. In this section, we state the existence of an
important factor called the stochastic complexity and show new insights about the role of the stochastic
complexity in RM. We also discuss a sensitivity helpful in tuning the parameters of action-selection
(AS) strategy and exhibit a sufficient condition for RM. We first give a review of the TD learning and
typical AS strategies.

4.1 Temporal Difference Learning and Action Selection Strategy

Let Qij denote the estimate of an action-value function (Sutton & Barto, 1998, Chapter 3) with respect
to a state-action pair (si, aj) ∈ S ×A. Let Ai be the set of indices of actions available in a state si ∈ S.
The TD learning is an iterative approximation method to directly update the estimate of the action-
value function from an observed event, without explicitly treating the matrix ΓT of the environment.
We introduce the one-step version of Q-learning (Watkins & Dayan, 1992), here. At each time step t,
for an observed one-step event (s(t), a(t), s(t+1), r(t+1)) = (si, aj , si′ , rk), the estimate Qij is updated
by

Qij ← Qij + αtδQiji′ , (34)

where αt is a learning rate at time step t and

δQiji′ = rk + γ max
j′∈Ai′

Qi′j′ −Qij , (35)

where γ denotes the discount factor that controls the relative importance of an immediate reward and
delayed rewards. The learning rate αt, where 0 ≤ αt ≤ 1, is gradually decreased with respect to t
such that the trajectory of the mean ordinary differential equation of Qij has a limit point. Under
certain conditions (Dayan, 1992), it was proved that all Qij converge to the expected values with
probability one. The convergence theorem was extended to more general versions using the stochastic
approximation method in (Jaakkola et al., 1994; Tsitsiklis, 1994).

Next, we review the following two AS strategies that have been employed in many cases.
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Softmax Method The softmax method (Sutton & Barto, 1998, Chapter 2) is the most popular
strategy and is also termed the Boltzmann method when the exponential function is used. Recall that
pij denotes the probability that the agent chooses an action aj in a state si. The policy probability is
defined as

pij
def= π (β,Qij) =

exp(βQij)
Zi(β)

, (36)

where the partition function is
Zi(β) def=

∑
j′∈Ai

exp(βQij′). (37)

The parameter β is gradually increased as n → ∞ to promote the acceptance of actions which may
produce a good return. Let us denote the value of β at time step n by βn.

ε-greedy Method In the ε-greedy method (Sutton & Barto, 1998, Chapter 2), with probability ε,
the agent randomly chooses an action from the possible ones. On the other hand, the agent chooses the
best action with the largest estimated value with probability 1− ε. That is, pij is given by

pij
def= π (ε,Qij) =

ε

Ji
+ (1− ε)θij , (38)

where Ji
def= |Ai| and

θij
def=

{
1 if j = arg maxj′∈Ai

Qij′

0 if j 	= arg maxj′∈Ai
Qij′

. (39)

The parameter ε is gradually decreased such that ε → 0 as n → ∞. We denote the value of ε at time
step n by εn.

Whether the softmax AS or the ε-greedy AS is better is unclear and it may depend on the task and
on human factors (Sutton & Barto, 1998, p. 31). Added to this, the explicit role of the parameters β
and ε is also unknown. In the rest of this section, we elucidate the mathematical role of the parameters
and the difference between the two strategies by studying their effect in RM.

4.2 Stochastic Complexity

We assume that the policy is improved sufficiently slowly such that the AEP holds. Figure 4 illustrates
an RL process on the manifold spanned by Γ. This manifold is called the information manifold (IM)
(Amari & Han, 1989). Fuller explanation about the figure will be described in the following section. We
use Q∗

ij to denote the expected value of Qij for all i, j, henceforth. Let p∗ij = π(β,Q∗
ij) in the softmax

method and p∗ij = π(ε,Q∗
ij) in the ε-greedy method. Let Γπ∗

be the policy matrix whose components are

given by p∗ij . We define Γ∗ def= (Γπ∗
,ΓT) and write the set of Γ∗ as Ω def= {Γ|Γπ = Γπ∗} for notational

convenience. The set Ω is given by changing the parameter of AS strategy, such as β and ε. The optimal
policy matrix is denoted by Γπ†

whose components are

p†ij =

{
1 if j = arg maxj′∈Ai

Q∗
ij′

0 if j 	= arg maxj′∈Ai
Q∗

ij′
. (40)

For example, in the softmax method we can write it as Γπ†
= {p†ij = π(∞, Q∗

ij)}, and in the ε-greedy

method we can also write it as Γπ†
= {p†ij = π(0, Q∗

ij)}. Also, we define Γ† def= (Γπ†
,ΓT). Figure 5

shows Ω in each method. As shown in Figures 5(a) and 5(b) the set of matrices Φ such that (21) holds,
designated by the shaded circle, depends on n but not on β or ε. Note that the number of elements
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in Cn
λn

(Γ) depends on β or ε because the parameter affects the value of H(Γπ|V), while the set of such
matrices does not depend. We assume that the neighborhood of the optimal matrix on the IM is smooth
(differentiable) for the parameters of the AS strategy, such as β and ε.

[Figure 4 about here.]

[Figure 5 about here.]

According to Lemma A.1, the number of possible conditional type matrices on the IM is determined
by n, I, J , and K. As n increases we can create empirical sequences with arbitrarily close conditional
type matrices to Γ∗. If the environment, or specifically, the state transition matrix ΓT is constant, Γ
varies only with the changes of Γπ. Hence the area of possible Φ on the IM is actually restricted. Now
we define a stochastic complexity that will play an important role in the later discussion.

Definition 4.1 (Stochastic complexity) The stochastic complexity (SC) is defined by

ψ(Γ) def= H(Γπ|V) + H(ΓT|W). (41)

This is referred to as complexity because the value of ψ(Γ) is closely related to the algorithmic complexity
as will be discussed in Section 4.4.

To understand the role of the SC in RL, it is worth to mention that the SC has a relationship
to exploration (or exploitation) (Sutton & Barto, 1998, Chapter 2) in some cases. In short, the SC
expresses the randomness of the agent’s policy. Exploration is, in general, to search for policies better
than the current one, instead of the simple randomness. One efficient way for such exploratory search
is to give a randomness to the policy as is done in the softmax and ε-greedy methods. In this case,
a policy for exploration is to enlarge the set of possible empirical sequences, that is, the Γ-typical set
in order to widely explore the environment. This is because the Γ-typical set has probability almost
one according to Theorem 3.1. On the other hand, using estimates of the action-value function the
agent has to select the best action with the largest estimate of the action-value function to maximize
the future return. Such a policy for exploitation is to make the Γ-typical set smaller, so that only few
empirical sequences which yield high return are allowed to be generated in practice. Thus, when the
agent performs randomized exploration in AS strategy, if the value of ψ(Γ) is large, then the policy
is exploratory, and analogously if the value is small, then the policy is exploitative. Of course, since
the SC does not assess the rewards of empirical sequence, we have to consider both the SC and the
rewards when we argue the original sense of exploration in RL. In (Iwata, Ikeda, & Sakai, 2004) the
estimated entropy (like the SC) of return with respect to each state-action was formulated and a novel
criterion for AS strategy was proposed by combining the estimated entropy with the estimates of the
action-value function.

4.3 Stochastic Complexity and Return Maximization

We will show the relationship between the SC and RM in RL. We use the term RM to maximize the
probability that the best sequences appear, but does not mean a lucky case in which the best sequences
appear unexpectedly.

Definition 4.2 (Return maximization) We denote a proper subset of best sequences by

X †
n

def= {x ∈ (S ×A× R0)n|Φπ = Γπ†
where Φπ ∈ Λπ

n}. (42)

Then, RM means that the subset of best sequences asymptotically has probability one, that is, Cn
λn

(Γ) =
X †

n as n→∞.

9



The following theorem states that RM can be performed under a proper AS strategy so that the
estimates of the value function eventually converge to the expected values.

Theorem 4.1 (RM near the end of process) If the agent’s policy tends to be optimal, then X †
n ⊂

Cn
λn

(Γ) holds and the probability Pr(X †
n) of RM satisfies

Pr(X †
n)→ |X †

n|
|Cn

λn
(Γ)| , (43)

for sufficient large n. Then, as n→∞ and Γ→ Γ†, Pr(X †
n)→ 1.

The proof is given in Appendix B.7.
Hence, we consider that X †

n ⊂ Cn
λn

(Γ) and then reduce the Γ-typical set such that Cn
λn

(Γ) 
 X †
n.

Here the key points are that

• by updating the estimates the agent has to improve the policy matrix Γπ as quickly as possible
such that the Γ-typical set includes the empirical sequence having the conditional type matrix
Γπ∗

, that is,
D(Γπ∗‖Γπ|FS) ≤ λn, (44)

(see Figure 4(a)), and then

• the agent is required to shut out empirical sequences except the best sequences from the Γ-typical
set in order to assign high probability to the best sequences (see Figure 4(b)).

The algorithm for the former is simply TD learning. Figure 4(a) illustrates that Γ on the IM is refined
by a TD learning such that the Γ-typical set includes the empirical sequences having the matrix Γ∗

of the conditional types, that is, (44) holds. It is known that the convergence order of TD learning is
at most 1/

√
n (Kushner & Yin, 1997). After satisfying (44) the agent has to allot higher probability

to the Γ-typical set. The goal of the latter is to make the number of elements in the Γ-typical set
small while satisfying (44). This leads to the result that the subset of the best sequences occurs with
high probability because according to Theorem 3.2 all the Γ-typical sequences of n time steps have the
same probability for sufficiently large n. From Theorem 3.3 we see that the number of elements in the
Γ-typical set is dependent on the SC ψ(Γ) and the quantity λn, and that the smaller each value is, the
smaller the number of elements. Recall that by tuning the parameters of the AS strategy the agent can
control only the SC. This leads us to the question of how sensitive the parameters such as β and ε are
for controlling the SC. The following theorems answer this question.

Theorem 4.2 (Relationship between β and SC) The value of ψ(Γ) decreases as β increases. The
derivative of ψ(Γ) with respect to β is

dψ(Γ)
dβ

=
I∑

i=1

vi

⎧⎨
⎩ −β

2(Zi(β))2

J∑
j=1

J∑
j′=1

(Qij −Qij′)2 exp(β(Qij +Qij′))

⎫⎬
⎭ . (45)

In particular, if β →∞, then
ψ(Γ)→ H(ΓT|W). (46)

Theorem 4.3 (Relationship between ε and SC) The value of ψ(Γ) decreases as ε → 0. The
derivative of ψ(Γ) with respect to ε is

−dψ(Γ)
dε

=
I∑

i=1

vi

{(
1− 1

Ji

)(
log

ε

Ji
− log

(
ε

Ji
+ 1− ε

))}
. (47)

In particular, if ε→ 0, then ψ(Γ) coincides with (46).
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Theorems 4.2 and 4.3 are proved in Appendices B.8 and B.9, respectively. The equations (45) and (47)
denote the sensitivity for the randomness of the policy. The main difference between the two methods
is that the estimates of the action-value function affect the derivative of the SC directly in the softmax
method but not in the ε-greedy method. Theorems 4.2 and 4.3 draw an attention to the important
dependence, often overlooked in tuning the parameter. In general, it is difficult to tune β and ε well and
the tuning forms depend only on n in the literatures. For example, βn = cn or εn = c/n is adopted and
then c is optimized by trial-and-errors, although the result of the tuning strongly depends on the values
of vi, Qij , and Ji for every i, j, as explicitly shown in Theorems 4.2 and 4.3. In other words, one of the
causes of the difficulty is that the sensitivity can not be considered on the above tuning. In fact, since
all the values of Qij and Ji are available for the agent and all the value of vi can be approximated by the
values of the type, the agent can calculate the sensitivity asymptotically. Accordingly, the sensitivity
may be a guide for tuning the parameters appropriately. The importance of knowing the sensitivity has
been also pointed out in (Dearden, Friedman, & Russell, 1998), first.

Example 4.1 (A guide of RM) The sensitivity is not something like a quantitative criterion to be
directly used by itself in practical issues because of its generality. However, it can be used as a qualitative
guide in choosing a tuning which depends on each case. Here, we calculate the sensitivity approximately
to gain an insight into the RM speed. Let c be an arbitrary constant value. When we choose εn = c/n,
there exists a non-negative value c′ such that

−dψ(Γ)
dε

= −
I∑

i=1

vi

{(
1− 1

Ji

)
log

(
Ji

c
n+ 1− Ji

)}
≈ −c′ log n, (48)

where n is sufficiently large. The value of c′ can be computed by {fi, Ji}Ii=1. Due to |Cn
λn

(Γ)| ≈
exp(nψ(Γ)) for sufficient large n,

− d

dε

1
|Cn

λn
(Γ)| =

n

|Cn
λn

(Γ)|
dψ(Γ)
dε

≈ c′′ n log n
exp(nψ(Γ))

, (49)

where c′′ is a non-negative value which depends on ψ(Γ) and c′. This is a qualitative guide for checking
the RM speed, dPr(X †)/dε, near the optimal policy because from Theorem 4.1

Pr(X †)→ |X †|
|Cn

λn
(Γ)| , (50)

for sufficient large n. Thus, we can estimate the RM speed near the end of learning process and can
select a tuning referring to it. If we think that the estimated speed is too fast for a given environment,
choose more slower tuning such as εn = c/ log n. Of course, this is a rough utility but have an interesting
potential by combining it with other criteria. In the case of the softmax method, similarly, when β = cn,
there exists a non-negative value c′ such that

dψ(Γ)
dβ

≈ −c′cn, (51)

where n is sufficiently large. Then, we have

d

dβ

1
|Cn

λn
(Γ)| ≈ c

′′ ncn

exp(nψ(Γ))
, (52)

for sufficient large n.
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Next, we consider another important factor λn for making the number of elements in the Γ-typical
set smaller. Figure 4(b) shows the changes of λn with n where the lower bound of λn is given by (23).
There may be a tighter bound in various situations such that MDPs have a deterministic rule because
the bound was derived under the condition that Γ has no constraint. In other words, the bound means
a sufficient condition for RM. Hence, the first order of the bound is tightest and valid only when the
agent takes “randomized” AS strategies2 such that pij > 0 for every i, j in the environments where
piji′k > 0 for every i, j, i′, k. In such cases, the bound suggests that the convergence rate of D(Φn‖Γ)
going to zero is at most (log n)/n and its coefficient is (IJ + I2JK). The convergence rate indicates
how fast the policy reflects on the structure of empirical sequence. The coefficient also implies that in
applications a lot of time steps are required for agreement between the current matrix Γ and the matrix
Φ of the conditional types regarding the empirical sequence when the state, action, and reward sets are
large.

4.4 Stochastic Complexity and Kolmogorov Complexity

In this section we show the relationship between the SC and the Kolmogorov complexity (KC) (Cover
& Thomas, 1991; Li & Vitányi, 1997). The SC is also reasonable from the point of view of algorithmic
complexity. Let l(x) denote the length of the sequence x. Let U(q) be the output of a universal
computer U when presented with a program q. The KC of a sequence x is defined as the minimal
description length of q (Cover & Thomas, 1991, pp. 147–148).

Definition 4.3 (KC and conditional KC) The KC KU (x) of a sequence x with respect to a univer-
sal computer U is defined as

KU (x) def= min
q:U(q)=x

l(q), (53)

the minimum length over all programs that print x and halt. If we assume that the computer already
knows the length of the sequence, then we can define the conditional KC knowing l(x) as

KU (x|l(x)) def= min
q:U(q,l(x))=x

l(q). (54)

This is the shortest possible description length if the length of x is made available to the computer U .

Since the length l(x) of an empirical sequence x ∈ (S ×A× R0)n is 3n, consider

KU (x|3n) = min
q:U(q,3n)=x

l(q). (55)

Note that KU (x|3n) denotes the algorithmic complexity to print x and halt. The following theorem
shows that the expected value of KU (x|3n) is asymptotically equal to the SC.

Theorem 4.4 (Relationship between KC and SC) If s ∈ Cn
κn

(V), (s,a) ∈ Cn
ξn

(W), and x ∈
Cn

λn
(Γ), then there exists a constant value c such that

log ν
n
− ρn ≤ 1

n
EΓ [KU (x|3n)]− ψ(Γ) ≤ ρn +

log I
n

+ (IJ + I2JK)
log(n+ 1)

n
+
c

n
, (56)

for a computer U and all n. In particular, if Γ→ Γ∗ as n→∞, then

lim
n→∞

1
n

EΓ∗ [KU (x|3n)] = ψ(Γ∗). (57)

The proof is given in Appendix B.10. The SC is so called because of this relationship.
2For example, the softmax and ε-greedy methods with the parameters β < ∞ and ε > 0, respectively.
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5 Conclusions

In this paper, we have formulated almost stationary ergodic MDPs by the type method and shown that
the AEP holds on empirical sequences in such processes. Under a proper AS strategy which guarantees
the convergence of the estimates, the RM is characterized by the SC ψ(Γ) and the quantity λn. We
examined the role of these factors on RM and then derived the sensitivity of the SC, which is a qualitative
guide in tuning the parameters of AS strategy. Also, we showed the bound of the convergence speed of
the empirical sequences tending to the best sequence in the worst cases. Using the results of (Merhav,
1991; Merhav & Neuhoff, 1992) the discussions in this paper can be readily extend to the more general
case where the source of empirical sequences is a unifilar source (Han & Kobayashi, 2002, p. 77) in a
similar manner.
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A Related Theorems

We will show a number of theorems related to the AEP. Obviously, from (Csiszár & Körner, 1997,
Lemma 2.2) we obtain the following lemma which plays a major role in determining the AEP.

Lemma A.1 (Number of elements in the set of possible Φ) The size of Λπ
n is upper bounded by

|Λπ
n| ≤ (n+ 1)IJ . (58)

Analogously,
|ΛT

n | ≤ (n+ 1)I2JK . (59)

Accordingly, the number of elements in the set of possible Φ is upper bounded at most by a polynomial
order of n, that is,

|Λn| ≤ (n+ 1)IJ+I2JK . (60)

The following lemma states the fact that the discrepancy between the empirical entropy and the entropy
asymptotically goes to zero.

Lemma A.2 Let Φ ∈ Λn denote the matrix of the conditional types with respect to the empirical
sequence which satisfies s ∈ Cn

κn
(V), (s,a) ∈ Cn

ξn
(W), and x ∈ Cn

λn
(Γ). Then, if λn ≤ 1/8, we obtain

∣∣ H(Φπ|FS)−H(Γπ|V)
∣∣≤ √2κn log J −

√
2λn log

√
2λn

IJ
, (61)

∣∣ H(ΦT|FSA)−H(ΓT|W)
∣∣≤√

2ξn log I +
√

2ξn logK −
√

2λn log
√

2λn

I2JK
. (62)

For the proof of this lemma, see Appendix B.1.
Now we show that the number of sequences with the same conditional type matrix increases expo-

nentially for n.

Theorem A.1 (Bound of |Cn(Φ,FS ,FSA)|) For every state sequence s ∈ Sn with the type FS and
matrix Φπ : S → A such that Cn(Φπ, s) is not empty,

exp {nH(Φπ|FS)}
(n+ 1)IJ

≤ |Cn(Φπ, s)| ≤ exp {nH(Φπ|FS)} . (63)
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Also, for every action sequence a ∈ An and matrix ΦT : S ×A → S ×R0 such that Cn(ΦT,FSA) is not
empty and the joint-type is FSA,

exp
{
nH(ΦT|FSA)

}
nIJ (n+ 1)I2JK

≤ |Cn(ΦT,FSA)| ≤ I exp
{
nH(ΦT|FSA)

}
. (64)

Therefore, for every x ∈ (S ×A×R0)n with the type FS and the joint-type FSA and for the matrix Φ,

exp
[
n
{
H(Φπ|FS) + H(ΦT|FSA)

}]
nIJ (n+ 1)IJ+I2JK

≤ |Cn(Φ,FS ,FSA)| ≤ I exp
[
n
{
H(Φπ|FS) + H(ΦT|FSA)

}]
. (65)

The proof is given in Appendix B.2. There also exist the following bounds on the probability of the
Φ-shell.

Theorem A.2 (Bound on probability of Cn(Φ,FS ,FSA)) For every matrix Φ such that Cn(Φ,FS ,FSA)
is not empty, Pr(Cn(Φ,FS ,FSA)) is bounded by

μ exp
[−n{D(Φπ‖Γπ|FS) + +D(ΦT‖ΓT|FSA)

}]
nIJ (n+ 1)IJ+I2JK

≤ Pr(Cn(Φ,FS ,FSA)) ≤
ν−1I exp

[−n{D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA)
}]
, (66)

where ν and μ are defined by (24) and (27), respectively.

The proof is given in Appendix B.3. This theorem implies that empirical sequences with conditional
type matrix Φ far from Γ are not likely to be generated in practice. The term “far” here means that
the divergence between Φ and Γ is large. We have mentioned the theorems to be used in the proofs of
Theorem 3.1–3.3.

B Proofs

B.1 Proof of Lemma A.2

From (Kullback, 1967), if s ∈ Cn
κn

(V), then

I∑
i=1

|fi − vi| ≤
√

2D(FS‖V). (67)

Hence, by H(P(i)) ≤ log J and (15),

∣∣ H(Γπ|FS)−H(Γπ|V)
∣∣=

∣∣∣∣∣
I∑

i=1

(fi − vi)H(P(i))

∣∣∣∣∣≤ √2κn log J (68)

is satisfied. In the same way as (Csiszár & Körner, 1997, Lemma 2.7), if λn ≤ 1/8, then

∣∣ H(Φπ|FS)−H(Γπ|FS)
∣∣=∣∣ H(Φπ,FS)−H(Γπ,FS)

∣∣≤ −√2λn log
√

2λn

IJ
. (69)

From ∣∣ H(Φπ|FS)−H(Γπ|V)
∣∣≤∣∣ H(Φπ|FS)−H(Γπ|FS)

∣∣ +
∣∣ H(Γπ|FS)−H(Γπ|V)

∣∣, (70)

we have (61). The equation (62) can be derived similarly.
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B.2 Proof of Theorem A.1

First, we define

|Cni(G(i))| def=
ni!∏J

j=1 nij !
. (71)

Since the actions given by si have the type G(i), from (Dueck & Körner, 1979) we have

exp
{
niH(G(i))

}
(ni + 1)J

≤ |Cni(G(i))| ≤ exp
{
niH(G(i))

}
. (72)

By |Cn(Φπ, s)| = ∏I
i=1 |Cni(G(i))|, |Cn(Φπ, s)| is bounded by

exp {nH(Φπ|FS)}∏I
i=1(ni + 1)J

≤ |Cn(Φπ, s)| ≤ exp {nH(Φπ|FS)} . (73)

Therefore, by
∏I

i=1(ni + 1)J ≤ (n+ 1)IJ we obtain (63).
The proof of (64) is different from the above proof because Cn(ΦT,FSA) is not only dependent on

FSA but also on the initial state s(1) because of Markov property. So for any i, j we define

|C̃nij (G(ij))| def=
nij !∏I

i′=1

∏K
k=1 niji′k!

. (74)

By following along the same lines as the proof of (63) above, we have

exp
{
nH(ΦT|FSA)

}
(n+ 1)I2JK

≤ |C̃n(ΦT,FSA)| ≤ exp
{
nH(ΦT|FSA)

}
. (75)

The set C̃n(ΦT,FSA) allows a unique reconstruction of empirical sequence with Cn(Φπ, s) only when
the initial state s(1) is known. Then, from (Davisson et al., 1981), the upper bound of Cn(ΦT,FSA) is

|Cn(ΦT,FSA)| ≤ I|C̃n(ΦT,FSA)| ≤ I exp
{
nH(ΦT|FSA)

}
, (76)

because s(1) is not specified by the I sequences. Next, in the same manner as (Davisson et al., 1981),
we obtain the lower bound,

|Cn(ΦT,FSA)| ≥
I∏

i=1

J∏
j=1

(nij − 1)!∏I
i′=1

∏K
k=1 niji′k!

≥ 1
nIJ
|C̃n(ΦT,FSA)| ≥ exp

{
nH(ΦT|FSA)

}
nIJ (n+ 1)I2JK

. (77)

Thus we have proved that (64) holds. Consequently, from (12) we obtain (65).

B.3 Proof of Theorem A.2

The probability of x ∈ (S ×A× R0)n is

Pr(x) =
Pr(s(1))

Pr(s(1)|s(n), a(n))

n∏
t=1

{Pr(a(t)|s(t)) Pr(s(t+ 1), r(t+ 1)|s(t), a(t))} , (78)

=
Pr(s(1))

Pr(s(1)|s(n), a(n))

⎛
⎝ I∏

i=1

J∏
j=1

pij
nij

⎞
⎠
⎛
⎝ I∏

i=1

J∏
j=1

I∏
i′=1

K∏
k=1

piji′k
niji′k

⎞
⎠ , (79)

=
Pr(s(1))

Pr(s(1)|s(n), a(n))
exp

[−n{D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA)

+H(Φπ|FS) + H(ΦT|FSA)
}]
, (80)

15



where Pr(s(n + 1)|s(n), a(n)) = Pr(s(1)|s(n), a(n)) by the cyclic convention. With the definitions of
(24) and (27), the probability of x is bounded by

μ exp
[−n{D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) + H(Φπ|FS) + H(ΦT|FSA)

}]
≤ Pr(x) ≤

ν−1 exp
[−n{D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) + H(Φπ|FS) + H(ΦT|FSA)

}]
. (81)

Using (65) and

min
x∈Cn(Φ,FS ,FSA)

|Cn(Φ,FS ,FSA)|Pr(x) ≤ Pr(Cn(Φ,FS ,FSA)) ≤ max
x∈Cn(Φ,FS ,FSA)

|Cn(Φ,FS ,FSA)|Pr(x),

(82)
we obtain (66).

B.4 Proof of Theorem 3.1

Let us define the set of the matrix Φ whose empirical sequence does not belong to the set of the Γ-typical
sequences as

Λ′
n = {Φ ∈ Λn

∣∣ D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) > λn}. (83)

Then,

Pr
(Cn

λn
(Γ)

)
= 1− Pr

⎛
⎝ ⋃

Φ∈Λ′
n

Cn(Φ,FS ,FSA)

⎞
⎠ . (84)

Following along the same lines as (Csiszár & Körner, 1997, Theorem 2.15) with (66) we have

Pr

⎛
⎝ ⋃

Φ∈Λ′
n

Cn(Φ,FS ,FSA)

⎞
⎠ ≤ ν−1I(n+1)IJ+I2JK exp

[
−n min

Φ∈Λ′
n

{
D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA)

}]
.

(85)
Since D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) > λn when Φ ∈ Λ′

n, substituting λn for the minimum value we
obtain

Pr

( ⋃
Φ∈Λ′

Cn(Φ,FS ,FSA)

)
≤ ν−1I(n+ 1)IJ+I2JK exp(−nλn), (86)

= exp
[
−n

{
λn − (IJ + I2JK) log(n+ 1) + log I − log ν

n

}]
. (87)

We define

εn(I, J,K, λn) def= exp
[
−n

{
λn − (IJ + I2JK) log(n+ 1) + log I − log ν

n

}]
, (88)

and hence εn → 0 as n→∞ if (23) is satisfied. Also, by (84) Theorem 3.1 holds.

B.5 Proof of Theorem 3.2

First, let us derive the lower bound. We define

ρn(I, J,K, κn, ξn, λn) def=
√

2κn log J +
√

2ξn logK +
√

2ξn log I

−
√

2λn log
√

2λn

IJ
−
√

2λn log
√

2λn

I2JK
. (89)
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By (81) we have

− log Pr(x) ≥ log ν + n
{
D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) + H(Φπ|FS) + H(ΦT|FSA)

}
, (90)

≥ log ν + n
{
H(Φπ|FS) + H(ΦT|FSA)

}
, (91)

≥ log ν + n
{
H(Γπ|V) + H(ΓT|W)− ρn

}
, (92)

where (91) is obtained by the non-negativity of the divergence and (92) follows from Lemma A.2.
Analogously, the upper bound is obtained as follows:

− log Pr(x) ≤ − log μ+ n
{
D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) + H(Φπ|FS) + H(ΦT|FSA)

}
, (93)

≤ − log μ+ n
{
H(Φπ|FS) + H(ΦT|FSA) + λn

}
, (94)

≤ − log μ+ n
{
H(Γπ|V) + H(ΓT|W) + λn + ρn

}
. (95)

Thus dividing (92) and (95) by n we have (26).

B.6 Proof of Theorem 3.3

We first prove the lower bound. Using the fact that Cn
λn

(Γ) ⊇ Cn(Φ,FS ,FSA) and (65), we get

|Cn
λn

(Γ)| ≥ |Cn(Φ,FS ,FSA)|, (96)

≥ exp
[
n
{
H(Φπ|FS) + H(ΦT|FSA)

}]
nIJ (n+ 1)IJ+I2JK

, (97)

= exp
[
n

{
H(Φπ|FS) + H(ΦT|FSA)− (IJ + I2JK) log(n+ 1) + IJ log n

n

}]
, (98)

≥ exp
[
n
{
H(Γπ|V) + H(ΓT|W)− ζn

}]
, (99)

where (99) is derived from Lemma A.2 and

ζn(I, J,K, κn, ξn, λn) def= ρn(I, J,K, κn, ξn, λn) +
(IJ + I2JK) log(n+ 1) + IJ log n

n
. (100)

Next, we consider the upper bound. By (65) and (22), we have

|Cn
λn

(Γ)| ≤
⋃

Φ∈Λn:

D(Φπ‖Γπ|FS)+D(ΦT‖ΓT|FSA)≤λn

|Cn(Φ,FS ,FSA)|, (101)

≤ I(n+ 1)IJ+I2JK exp
[
n
{
H(Φπ|FS) + H(ΦT|FSA)

}]
, (102)

≤ exp
[
n
{
H(Γπ|V) + H(ΓT|W) + ηn

}]
, (103)

where (103) is derived from Lemma A.2 and

ηn(I, J,K, κn, ξn, λn) def= ρn(I, J,K, κn, ξn, λn) +
(IJ + I2JK) log(n+ 1) + log I

n
. (104)

Thus we have proved the upper and lower bounds in Theorem 3.3.
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B.7 Proof of Theorem 4.1

When the agent’s return is maximized, obviously the subset of best sequences has to be included within
the Γ-typical set. Hence, X †

n ⊂ Cn
λn

(Γ) holds and then

Pr(X †
n) = Pr(Cn

λn
(Γ)) Pr(X †

n|Cn
λn

(Γ)). (105)

From Theorem 3.1, for sufficient large n,

Pr(Cn
λn

(Γ)) ≈ 1. (106)

Since from Theorem 3.2 every element in Cn
λn

(Γ) has the same probability for sufficient large n, we have

Pr(X †
n|Cn

λn
(Γ))→ |X †

n|
|Cn

λn
(Γ)| . (107)

Therefore, (43) holds. Then, from the definition of X †
n, as n → ∞ and Γ → Γ† clearly we obtain

Pr(X †
n)→ 1.

B.8 Proof of Theorem 4.2

Differentiating (36) with respect to β, we have

dπ(β,Qij)
dβ

=
exp(βQij)

(
QijZi(β)−∑J

j=1 {Qij exp(βQij)}
)

(Zi(β))2
. (108)

Using (108) we get

d

dβ
H(G(i)) = −

J∑
j=1

d

dβ
(π(β,Qij) log π(β,Qij)) , (109)

= −
J∑

j=1

(log π(β,Qij) + 1)
dπ(β,Qij)

dβ
, (110)

=
β

(Zi(β))2

⎧⎪⎨
⎪⎩
⎛
⎝ J∑

j=1

Qij exp(βQij)

⎞
⎠

2

− Zi(β)

⎛
⎝ J∑

j=1

Q2
ij exp(βQij)

⎞
⎠
⎫⎪⎬
⎪⎭ , (111)

= − β

2(Zi(β))2

J∑
j=1

J∑
j′=1

(Qij −Qij′)2 exp(β(Qij +Qij′)), (112)

≤ 0. (113)

Therefore, by dH(Γπ|V)/dβ =
∑I

i=1 vi(dH(G(i))/dβ) we obtain (45). Also, on the limit β → ∞,
H(P(i)) = 0 holds for all i. Hence we obtain (46).

B.9 Proof of Theorem 4.3

Differentiating (38) with respect to ε, we have

dπ(ε,Qij)
dε

=
1
Ji
− θij . (114)
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By (114) we have

− d

dε
H(G(i)) =

J∑
j=1

d

dε
(π(ε,Qij) log π(ε,Qij)) , (115)

=
J∑

j=1

(log π(ε,Qij) + 1)
dπ(ε,Qij)

dε
, (116)

=
1
Ji

J∑
j=1

log
(
ε

Ji
+ (1− ε)θij

)
−

J∑
j=1

θij log
(
ε

Ji
+ (1− ε)θij

)
−

J∑
j=1

θij + 1, (117)

=
(

1− 1
Ji

)(
log

ε

Ji
− log

(
ε

Ji
+ 1− ε

))
, (118)

≤ 0. (119)

Accordingly, using dH(Γπ|V)/dε =
∑I

i=1 vi(dH(G(i))/dε) we obtain (47). Also, on the limit ε → ∞,
H(P(i)) = 0 holds for all i. Therefore we have (46).

B.10 Proof of Theorem 4.4

First, let us consider the lower bound. Since the length l(q) of the program q satisfies the Kraft inequality
(Cover & Thomas, 1991, p. 154), we have∑

q:U(q)halts

exp(−l(q)) ≤ 1. (120)

We assign to each x the length of the shortest program q such that U(q, 3n) = x ∈ Cn
λn

(Γ). These
shortest programs also satisfy the Kraft inequality. Since the expected codeword length must be greater
than the entropy, we obtain the following lower bound,

EΓ [KU (x|3n)] ≥ EΓ [− log Pr(x)] , (121)
≥ log ν + n {ψ(Γ)− ρn} , (122)

by (92).
Next we consider the upper bound. Let c denote a constant value. We describe the matrix Φ ∈ Λn

with respect to the empirical sequence using log |Λn| bits. Also, to describe the index of the empirical
sequence within the set of all sequences having the same matrix of conditional types, log |Cn(Φ,FS ,FSA)|
bits are required because the set has less than |Cn(Φ,FS ,FSA)| elements. Hence,

KU (x|3n) ≤ log |Cn(Φ,FS ,FSA)|+ log |Λn|+ c, (123)

≤ n{H(Φπ|FS) + H(ΦT|FSA)
}

+ log I + (IJ + I2JK) log(n+ 1) + c, (124)

≤ n {ψ(Γ) + ρn}+ log I + (IJ + I2JK) log(n+ 1) + c, (125)

where (124) follows from Lemma A.1 and (65), and (125) follows from Lemma A.2. Again, taking the
expectation and dividing (122) and (125) by n yields the upper bound of (56).
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Figure 1: Interactions between the agent and the environment.
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Figure 2: Structure of the Φ-shell.
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The set of all sequences of n time steps
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Γ-typical sequence
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Manifold spanned by Γ

{Φ ∈ Λn|D(Φπ‖Γπ|FS) + D(ΦT‖ΓT|FSA) ≤ λn}

Figure 3: Γ-typical set and Γ-typical sequence.
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Information manifold

Initial Γ
Updating Qij
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D(Γπ∗‖Γπ|FS)

(a) Trajectory of Γ by updating Qij .

Γ∗

Γ

∞

Ω

n

λn

(b) Asymptotic decrease of λn.

Figure 4: Matrix Γ on the information manifold. Figure 4(a) illustrates the trajectory, drawn by
updating the estimates of the action-value function using TD methods. Figure 4(b) shows the changes
of λn with n.
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(a) Ω in the softmax method.
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ε

(b) Ω in the ε-greedy method.

Figure 5: Set Ω in the softmax and ε-greedy methods. The matrix Γπ∗
varies with the changes of the

parameter of the AS strategy, so that the set Ω is drawn as shown here.
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