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Abstract

We present a general analysis of return maximization in reinforcement learning.

This analysis does not require assumptions of Markovianity, stationarity, and er-

godicity for the stochastic sequential decision processes of reinforcement learn-

ing. Instead, our analysis assumes the asymptotic equipartition property funda-

mental to information theory, providing a substantially different view from that in

the literature. As our main results, we show that return maximization is achieved

by the overlap of typical and best sequence sets, and we present a class of stochas-

tic sequential decision processes with the necessary condition for return maxi-

mization. We also describe several examples of best sequences in terms of return

maximization in the class of stochastic sequential decision processes, which sat-

isfy the necessary condition.
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1. Introduction

Reinforcement learning (RL) (Kaelbling et al., 1996; Mitchell, 1997; Sutton

& Barto, 1998) refers to the framework of interactions between an agent and its

environment. Stochastic sequential decision processes (SDPs) in RL consist of

action-selection and state-transition probabilities determined by an agent’s policy

and the environment, respectively. During an SDP, the agent’s policy for action-

selection is improved by a learning algorithm, such as temporal difference learning

(Watkins & Dayan, 1992; Dayan, 1992; Tsitsiklis, 1994). One of the outstanding

features of RL is the definition of an optimal policy via return maximization (RM),

and not through correct action-selections indicated by a supervisor. Basically, RM

means that the state-action-reward sequences generated during an SDP tend to

provide maximum returns as time progresses. Because this feature obviates the

need to indicate correct action-selections individually for all state-actions, RL has

been applied extensively to represent sequential decision-making processes aris-

ing in various applications (Tesauro, 1994; Likas, 1999; Doya, 2000; Morimoto

& Doya, 2005; Pandana & Liu, 2005; Abbeel et al., 2007; Fujita & Ishii, 2007).

SDPs in RL are usually formulated as Markov decision processes (MDPs),

in which the subsequent state is dependent only on the current state and the ac-

tion taken by the agent. We often assume stationarity, ergodicity, or both of an

MDP for its analysis. In brief, stationarity means that the probability measure

that determines a stochastic process is not time-dependent, while ergodicity im-

plies that the transition between any values drawn by a stochastic process occurs

non-periodically with a positive probability. These assumptions ensure that the

expectation of value function estimates are taken, which is required not only for

simplicity of analysis of stochastic approximation, but also in the definition of a
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stationary optimal policy. Nevertheless, most SDPs appearing in RL applications

are, in fact, not necessarily Markovian, stationary, or ergodic. For example, if

an environment varies with time, then the SDP is not a stationary process. This

example leads us to question what conditions a non-Markovian, non-stationary,

and/or non-ergodic SDP must satisfy to make RM possible. Answering this type

of question requires a more general view of RL, and hence we take a substantially

different view from the one found in the literature.

In this paper, we formulate RL as a much more general SDP than merely an

MDP. In relation to this, we introduce several information-theoretic quantities to

deal with general SDPs by building a novel bridge between RL and information

theory. The aim of this paper is to shed further light on RM in RL, without the

Markovianity, stationarity, or ergodicity assumptions for SDPs. Accordingly, we

give a general definition of RM and present a class of SDPs with the necessary

condition for RM. The definition of RM and the class of SDPs realize the first step

in advancing RL theory in general SDPs. We also give several examples of best

sequences in terms of RM within the class of SDPs.

The organization of this paper is as follows. Having reviewed MDPs in RL

in Section 2, we consider more general SDPs in Section 3. The main results are

discussed in Section 4. Finally, we give a summary of this paper in Section 5.

2. Markov Decision Processes

We concentrate on discrete-time SDPs with discrete states, actions, and re-

wards. We consider an episodic task throughout this paper. Let N denote the

positive integers. Let R and R
+ denote the real numbers and the positive real

numbers, respectively. The sets of states, actions, and rewards of SDPs are de-
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noted, respectively, as

S def.
= { s1, s2, . . . , sI } , (1)

A def.
= { a1, a2, . . . , aJ } , (2)

R def.
= { r1, r2, . . . , rK } , (3)

where rk ∈ R and | rk | < ∞ for all k. Throughout this paper, we assume that

S, A, and R are non-empty finite sets with I, J, and K elements, respectively.

Let s(t), a(t), and r(t) be a state, action, and reward, respectively, at time t ∈ N.

At each time t, the agent senses the current state s(t), and then according to its

policy, selects an action a(t), which is executed. According to the state-transition

probabilities of the environment, the action changes the state into a subsequent

state s(t + 1) and yields a scalar reward r(t + 1) as well. During each episode,

these steps are repeated by incrementing time t by one. Training consists of a

series of episodes. MDPs (Kaelbling et al., 1996; Mitchell, 1997; Sutton & Barto,

1998) are the most popular SDPs in RL for describing a framework of the interac-

tions between an agent and its environment. For convenience of implementation,

we make use of a six-tuple in defining an MDP, but we could equally well have

used one of the other MDP definitions (Howard, 1960; Hopp et al., 1987; Sutton

& Barto, 1998), which essentially mean the same. The six-tuple of an MDP is

expressed as (
S,A,R,

{
p(t)

i j

}
,
{

p(t)
i ji′k

}
,
{

p(1)
i

})
,
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where for all i, j, i′, k,

p(t)
i j

def.
= Pr(a(t) = aj | s(t) = si), (4)

p(t)
i ji′k

def.
= Pr(s(t + 1) = si′ , r(t + 1) = rk | s(t) = si, a(t) = aj), (5)

p(1)
i

def.
= Pr (s(1) = si) . (6)

Equations (4) and (5) are called the action-selection probability and state-transition

probability, respectively. The sequence of state, action, and reward is drawn from

the respective Markov transitions. It is common in RL that the state-transition

probabilities are unknown to the agent. This assumption creates a different problem-

setting to that in dynamic programming (Bellman, 1957). If the state-transition

probabilities of an MDP are not time-dependent, then its state-transition is said to

be stationary. Furthermore, the policy of an agent whose action-selection proba-

bilities are not time-dependent is said to be stationary. An MDP with a station-

ary state-transition and policy is called a stationary MDP. If the Markov chain of

state, which is determined by a state-transition and a policy, is irreducible and

non-periodic, then we say the MDP is ergodic on S. Similarly, if the Markov

chain of state-action is irreducible and non-periodic, then the MDP is said to be

ergodic on S × A. For simplicity, when an MDP is ergodic on S or S × A, it

is simply said to be ergodic, as long as we do not need to specify the ergodicity

condition.

The method for describing an agent’s policy is called an action-selection strat-

egy. A number of action-selection strategies have been proposed (Kaelbling,

1993; Dearden et al., 1998; Ishii et al., 2002; Iwata et al., 2004; Neumann &

Peters, 2009). Here, we introduce one of the most popular methods, the soft-

max method (Kaelbling et al., 1996; Mitchell, 1997; Sutton & Barto, 1998). This
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method depends on the estimates of action-value functions (Sutton & Barto, 1998),

each of which indicates the (discounted) sum of rewards to be received in the fu-

ture. Let Qi j denote the action-value function estimate of state-action (si, aj) ∈
S ×A. In this method, Equation (4) can be written as

p(t)
i j =

exp
(
βQi j

)
∑

j′∈Ji
exp(βQi j′)

, (7)

whereJi denotes the set of action indices available in state si, and β is a parameter

that determines how strongly the policy prefers actions with high estimates. Note

that Equation (7) is not time-dependent only when all the estimates of Qi j and

parameter β are not time-dependent.

In fact, Equation (7) is time-dependent in most MDPs because an agent im-

proves its policy by updating the estimates, and the parameter needs to be asymp-

totically increased to promote the acceptance of actions that may yield a higher

return than others. Moreover, the state-transition of the environment is not sta-

tionary in some practical cases. However, we sometimes require the MDP to be

stationary and/or ergodic for simplicity of analysis. At the least we frequently as-

sume that the state-transition is stationary, the MDP is ergodic, and at each time,

the future MDP is stochastically the same as the current one. These assumptions

provide the assurance that the estimates will converge to their respective expecta-

tions by a stochastic approximation method and also that there exists a stationary

optimal policy. Indeed, mathematical analyses of RL and learning algorithms for

updating the estimates make use of several or all of these assumptions (Black-

well, 1962; Watkins & Dayan, 1992; Dayan, 1992; Tsitsiklis, 1994; Kushner &

Yin, 1997; Borkar & Meyn, 2000; Singh et al., 2000; Gosavi, 2006; Iwata et al.,

2006a,b).
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3. Stochastic Sequential Decision Processes

We have explained that SDPs are usually formulated as MDPs with action-

selection and state-transition probabilities, and also that these are supposed to be

stationary, at least with respect to state-transition, ergodic, or both in the literature.

Now, we dispense with these assumptions to give an example of more general

SDPs. We consider that the estimates and parameters referred to in the softmax

method are time-dependent and obey their respective stochastic processes. For all

i, j, let Qi j(t) denote the action-value function estimate of state-action (si, aj) at

time t. The set of action-value function estimates on R
IJ is denoted by

Q(t)
def.
=

{
Qi j(t) | 1 ≤ i ≤ I, 1 ≤ j ≤ J

}
. (8)

Let β(t) denote parameter β on R at time t. In this case, an action at each time t is

selected according to the action-selection probability expressed as

p(t)
i j (β,Q)

def.
= Pr(a(t) = aj | β(t) = β,Q(t) = Q, s(t) = si). (9)

In the same manner, we consider that the state-transition probability is parameter-

ized with a vector of time-dependent parameters. For example, consider

p(t)
i ji′k(ζ)

def.
= Pr(s(t + 1) = si′ , r(t + 1) = rk | ζ(t) = ζ, s(t) = si, a(t) = aj), (10)

where ζ(t) denotes a parameter vector on some space at time t. We can see that

p(t)
i j and p(t)

i ji′k are drawn according to probability measures that define β(t), Q(t),

and ζ(t). Accordingly, in general, an SDP defined by p(t)
i j and p(t)

i ji′k is no longer

stationary, ergodic, or Markovian with respect to its action-selection and state-

transition. This argument holds, even if we use another action-selection strategy.

Having noticed that the conventional form of MDPs is inadequate for dealing

with the SDP defined by Equations (9) and (10), we formulate RL as a more
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general SDP. For all t ∈ N, we use θ(t) to denote all the factors that determine

the action-selection and state-transition probabilities of the SDP. Θ denotes the

sample space of all possible outcomes of θ(t). For all n ∈ N, an outcome of

(θ(1), . . . , θ(n)) on Θn is simply denoted as θ. For example, if the action-selection

and state-transition probabilities of an SDP are given by Equations (9) and (10),

respectively, then θ(t) is expressed as

θ(t) = (Q(t), β(t), ζ(t)) . (11)

Furthermore, if the SDP is a stationary MDP, then there exists a vector θ̄ ∈ Θ such

that θ(t) = θ̄ for all t ∈ N. For all n ∈ N, let

Xn def.
= S × (A× S × R)n . (12)

We denote the three-tuple of state, action, and reward at time t by

x(t)
def.
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
s(1) for t = 0,

(a(t), s(t + 1), r(t + 1)) for all t ∈ N.
(13)

Using the notation, the sequence of state, action, and reward,

s(1), a(1), s(2), r(2), a(2), . . . , s(n), r(n), a(n), s(n + 1), r(n + 1),

is denoted in short by

x(0), x(1), . . . , x(n).

We are now in a position to define the SDP.

Definition 1 (Probability Measure). Given θ ∈ Θn, let Pn
θ be a probability mea-

sure on Xn expressed as

Pn
θ(x)

def.
= Pr ((x(0), x(1), . . . , x(n)) = x | (θ(1), . . . , θ(n)) = θ ) , (14)
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for all x ∈ Xn. We denote the stochastic variables drawn according to Pn
θ by Xn

θ .

For all x ∈ Xn, the mixed measure of Pn
θ is expressed as

Pn(x)
def.
=

∫
Θn

Pn
θ(x)dyn(θ), (15)

where dyn is the probability measure on Θn. We denote the stochastic variables

drawn according to Pn by Xn.

SDP Xn is a stochastic process defined as (Xn, Pn). Note that an MDP six-tuple

can be rewritten as a two-tuple in this manner. In an episodic task discussed in

this paper, the sequence of Xn is observed repeatedly.

The analysis of stochastic processes through their mixed process is well estab-

lished in information theory and is known as information-spectrum analysis (Han,

2003). In this paper, we examine how the SDPs
{
Xn
θ | θ ∈ Θn

}
should be drawn for

RM, by analyzing their mixed SDP Xn. We start by demonstrating in Example 1

that entropy is a useful quantity for verifying (asymptotically mean) stationary

ergodic processes.

Example 1 (Stationary Ergodic SDPs). If Pn is stationary and ergodic, then it

has the following two properties:

1. there exists a fixed constant c ∈ R+ such that

lim
n→∞

1
n

H (Pn) = c, (16)

where H (Pn) denotes the entropy of Pn,

H (Pn)
def.
=

∑
x∈Xn

Pn(x) log
1

Pn(x)
, (17)

and hence c is called the entropy rate of Pn.
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2. the sequence of (1/n) log(1/Pn(Xn)) converges to the entropy rate, that is,

lim
n→∞

1
n

log
1

Pn(Xn)
= lim

n→∞
1
n

H(Pn) a.e., (18)

where a.e. means that the equation is true almost everywhere (Gray, 2010).

The proof is given in (Barron, 1985; Gray, 2010). Similar properties also hold

when Pn is asymptotically mean stationary and ergodic (Gray & Kieffer, 1980;

Gray, 2010).

Throughout this paper, all logarithms are expressed by the same arbitrary base.

Note that an SDP, whose Pn has the two properties, is more general than a station-

ary ergodic process.

Example 2 (Non-Stationary and/or Non-Ergodic Processes). If Pn is neither sta-

tionary nor ergodic, then the sequence of (1/n) log(1/Pn(Xn)) does not always

converge to a constant fixed by Pn as n → ∞. An example of this is found in

(Han, 2003, Chapter 1).

We have explained in Examples 1 and 2 that the entropy is available for the

analysis of stationary ergodic processes, but not always for more general processes

than these. Accordingly, to analyze more general processes, we introduce a further

information-theoretic quantity of SDPs, known as the spectral entropy rate (Han

& Verdú, 1993; Han, 2003). The spectral superior entropy rate of Pn is defined as

H (P∞)
def.
= inf

{
b ∈ R

∣∣∣∣∣∣ lim
n→∞Pr

(
1
n

log
1

Pn(Xn)
> b

)
= 0

}
, (19)

while the spectral inferior entropy rate of Pn is defined as

H (P∞)
def.
= sup

{
b ∈ R

∣∣∣∣∣∣ lim
n→∞Pr

(
1
n

log
1

Pn(Xn)
< b

)
= 0

}
. (20)

The spectral superior and inferior entropy rates of Pn
θ are defined similarly.
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Figure 1: Entropy spectrum.

Example 3 (Entropy Spectrum). In SDPs, the quantity

lim
n→∞

1
n

log
1

Pn(Xn)
, (21)

has a spectrum that ranges between H (P∞) and H (P∞). For example, consider

Pn(x) = Pn
θ1

(x)dyn (θ1) + Pn
θ2

(x)dyn (θ2) , (22)

where dyn (θ1) + dyn (θ2) = 1, for all θ1, θ2 ∈ Θn. The probability density func-

tion of the quantity, illustrated in Figure 1, is referred to as the entropy spectrum

(Han & Verdú, 1993; Han, 2003). In Figure 1, the horizontal and vertical axes

show limn→∞(1/n) log(1/Pn(Xn)) and probability, respectively, and the oblique

axis takes θ1 and θ2 only in this case. The figure illustrates that the entropy spec-

trum of Pn is the mixture of the entropy spectra of Pn
θ1

and Pn
θ2

.

4. Main Results

The asymptotic equipartition property (AEP) (Cover & Thomas, 2006) is fun-

damental to information theory. In short, the AEP implies that there exists a typi-

cal set of sequences with probability nearly one, which are almost equi-probable.

11



Since the AEP was first introduced by Shannon (Shannon, 1948) in a stationary

ergodic process, there have been many studies on it in other stochastic processes

(McMillan, 1953; Breiman, 1957, 1960; Moy, 1961; Kieffer, 1974; Gray & Ki-

effer, 1980; Barron, 1985; Verdú & Han, 1997). In particular, the concept of the

AEP was ultimately generalized to arbitrary general processes in (Verdú & Han,

1997; Han, 2003). In the RL context, the AEP of a stationary ergodic MDP was

first shown in (Iwata et al., 2006a,b) using the method of types (Csiszár & Körner,

1997; Csiszár, 1998). In this section, we introduce the AEP into RL, and explain

the AEP-based analysis of RM.

Henceforth, whenever we refer to the AEP, we mean the generalized AEP

defined as follows (Verdú & Han, 1997; Han, 2003).

Definition 2 (AEP). For all n ∈ N, let Mn denote a probability measure on a

sample space Yn. Mn is said to possess the AEP if it satisfies the following. For

all δ ∈ R+, as n→ ∞,

Mn (Bδ (Mn))→ 0,

Mn (S δ (Mn))→ 0,
(23)

where Bδ (Mn) denotes the set of sequences with atypically large probabilities,

Bδ (Mn)
def.
=

{
y ∈ Yn |Mn(y) ≥ exp (−(1 − δ)H (Mn))

}
, (24)

and S δ (Mn) denotes the set of sequences with atypically small probabilities,

S δ (Mn)
def.
=

{
y ∈ Yn |Mn(y) ≤ exp (−(1 + δ)H (Mn))

}
. (25)

The AEP implies that under some constraint on Mn, there exists a set of se-

quences in Yn with probability of almost one. Definition 3 presents a new op-

timality criterion for SDPs, which is distinct from the conventional criteria for

policies. This enables us to relate SDPs in RL to the AEP.
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Definition 3 (Return Maximization). For all n ∈ N, let X∗εn be the set of best

sequences in Xn. RM means that for all ε ∈ R+,

Pn (X∗εn)→ 1, (26)

as n→ ∞.

In fact, the theorems in this section hold for any non-empty set of best se-

quences. In this sense, arbitrary sequences can be defined as the best sequences,

but those in an RL context should be sequences that tend to yield a maximum

return as time progresses. As an example, we specify the best sequences for a

stationary ergodic MDP using the action-value functions.

Example 4 (Best Sequences for Stationary Ergodic MDPs). Assume that Xn is

a stationary MDP, which is ergodic on S and S × A. For all t ∈ N, the stochastic

variables of state, action, and reward at time t, drawn by Xn are denoted by sXn(t),

aXn(t), and rXn(t), respectively. Given Xn = x ∈ Xn, the types thereof for si ∈ S,

(si, aj) ∈ S ×A, and (si, aj, si′ , rk) ∈ X are, respectively,

fi(x)
def.
=

1
n
�{ t ∈ {1, . . . , n} | sXn(t) = si }, (27)

fi j(x)
def.
=

1
n
�
{

t ∈ {1, . . . , n} ∣∣∣ (sXn(t), aXn(t)) = (si, aj)
}
, (28)

fi ji′k(x)
def.
=

1
n
�
{

t ∈ {1, . . . , n} ∣∣∣ (sXn(t), aXn(t), sXn(t + 1), rXn(t + 1)) = (si, aj, si′ , rk)
}
,

(29)

where �{ · } denotes the number of elements in a finite set. For all i, j, i′, k, we

define their conditional types p̂i j(x) and p̂i ji′k(x) by

fi j(x) = fi(x)p̂i j(x), (30)

fi ji′k(x) = fi j(x)p̂i ji′k(x). (31)
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Since in this case, the p(t)
i j and p(t)

i ji′k in Equations (4) and (5) are invariant with

respect to t, we denote these as pi j and pi ji′k, respectively, dropping the t. Con-

sidering the AEP of the stationary ergodic MDPs (Iwata et al., 2006a,b), the best

sequences based on the action-value functions are described as

X∗εn def.
= { x ∈ Xn |D ( p̂(x) ‖ p∗ | f (x)) ≤ ε } , (32)

for all ε ∈ R+, where

D ( p̂(x) ‖ p∗ | f (x))
def.
=

I∑
i=1

fi(x)
J∑

j=1

p̂i j(x) log
p̂i j(x)

p∗i j

+

I∑
i=1

J∑
j=1

fi j(x)
I∑

i′=1

K∑
k=1

p̂i ji′k(x) log
p̂i ji′k(x)

pi ji′k
, (33)

and

p∗i j
def.
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if j = argmax j′∈Ji

Q∗i j′ ,

0 if j � argmax j′∈Ji
Q∗i j′ ,

(34)

where Q∗i j denotes the action-value function of (si, aj). The first and second terms

in Equation (33) denote the conditional information divergences of the action-

selection and state-transition probabilities, respectively. These probabilities rely

on the stationary distributions on state and state-action, which are derived from

the ergodicity. Note that any action-value function becomes a fixed real number

under the stationary ergodic MDPs.

In Example 4, we have explained how to define best sequences using the

action-value functions of Q∗i j. We see that realizing RM with the best sequences

determined by the action-value functions, as proposed in this paper, essentially

corresponds to obtaining the optimal policy in existing RL studies under the sta-

tionary ergodic MDPs. The key to this example is that the best sequences can be
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defined by p∗i j, which represents a stationary optimal policy. However, for all i, j,

Q∗i j does not always become a real number fixed by Pn under more general SDPs

than stationary ergodic MDPs. This implies that in general, an optimal policy

is not stationary in such cases. Accordingly, the definition of best sequences in

Example 4 is no longer applicable to such general SDPs.

Now, we consider the relationship between best sequences and the optimal

policy in more general SDPs. For all (x, θ) ∈ Xn × Θn, let

P̃n(x, θ)
def.
= Pn

θ(x)dyn(θ) (35)

denote the joint probability measure of action-selection, state-transition, and their

factors. Let P̃∗
n

be the joint probability measure given by an optimal policy. Since

the agent is able to control only action-selection probabilities (via some of the fac-

tors), for given state-transition probabilities, the area of P̃∗
n

obtained by changing

the action-selection probabilities is actually restricted over the domain of P̃n,

{
P̃n | P̃n is a probability measure

}
.

For all x ∈ Xn, we let

P∗n(x)
def.
=

∫
Θn

P̃∗
n
(x, θ). (36)

The possible P∗n is also restricted over its domain. We use P to denote the re-

stricted domain of Pn. There are several ways of defining an optimal policy in

more general SDPs. In Example 5, we show best sequences provided by an opti-

mal policy in terms of average reward over time.

15



Example 5 (Best Sequences for More General SDPs). For all n ∈ N, let

A(Pn)
def.
= inf

⎧⎪⎪⎨⎪⎪⎩ b ∈ R
∣∣∣∣∣∣∣ Pr

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
t=1

rXn(t) > b

⎞⎟⎟⎟⎟⎟⎠ = 0

⎫⎪⎪⎬⎪⎪⎭ , (37)

A(Pn)
def.
= sup

⎧⎪⎪⎨⎪⎪⎩ b ∈ R
∣∣∣∣∣∣∣ Pr

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
t=1

rXn(t) < b

⎞⎟⎟⎟⎟⎟⎠ = 0

⎫⎪⎪⎬⎪⎪⎭ . (38)

Since

−∞ < min
k: 1≤k≤K

rk ≤ 1
n

n∑
t=1

rXn(t) ≤ max
k: 1≤k≤K

rk < ∞, (39)

A(Pn) and A(Pn) are finite for all n ∈ N. For all n ∈ N, let

P∗n def.
= argmax

Pn∈P

∫ A(Pn)

A(Pn)
bλn(b)db, (40)

where

λn(b)
def.
= Pr

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
t=1

rXn(t) = b

⎞⎟⎟⎟⎟⎟⎠ . (41)

For all n ∈ N and all ε ∈ R
+, the best sequences of n time steps in more general

SDPs are described as

X∗εn def.
=

{
x ∈ Xn | x � Bε

(
P∗n

)
, x � S ε

(
P∗n

) }
. (42)

In Corollary 1, we explain why the set of best sequences should be defined by

Equation (42). One of the main results is given by Theorem 1, which implies that

RM is based on the AEP.

Theorem 1 (Role of the AEP in RM). If

1. Pn has the AEP, and

2. for all δ, ε ∈ R+,

lim
n→∞

{
Pn (X∗εn ∪Cδ (Pn)

) − Pn (X∗εn ∩Cδ (Pn)
)}
= 0, (43)
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where

Cδ (Pn)
def.
= { x ∈ Xn | x � Bδ (Pn) , x � S δ (Pn) } , (44)

then RM holds.

Proof. Since Pn has the AEP, for all δ ∈ R+, Equation (23) gives

lim
n→∞ Pn (Cδ (Pn)) = 1. (45)

Since

Pn (Cδ (Pn)) ≤ Pn (X∗εn ∪Cδ (Pn)
)
, (46)

Pn (X∗εn ∩Cδ (Pn)
) ≤ Pn (X∗εn) ≤ Pn (X∗εn ∪Cδ (Pn)

)
, (47)

Equations (45) and (43) give

lim
n→∞ Pn (X∗εn ∪Cδ (Pn)

)
= 1, (48)

and

lim
n→∞

{
Pn (X∗εn ∪Cδ (Pn)

) − Pn (X∗εn)} = 0, (49)

respectively. Therefore, we reach the conclusion in Equation (26).

The set of sequences given by Equation (44) is referred to in information the-

ory as the typical set. If the first condition of Theorem 1 holds, then the second

condition is equivalent to

lim
n→∞Cδ (Pn) = lim

n→∞X
∗
ε

n, (50)

because Equation (43) can be rewritten as

lim
n→∞ Pn

(
X∗εn ∩Cδ (Pn)

)
= 0, (51)

lim
n→∞ Pn

(
X∗εn ∩Cδ (Pn)

)
= 0, (52)
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set of sequences Xn

sequence x ∈ Xn

typical set Cδ (Pn)

set of best sequences X∗εn

Figure 2: Best sequences and the typical set.

where · denotes the complement of a set, and these equations yield Equation (50)

immediately. Figure 2 shows the set of best sequences and the typical set. The

dots, light shaded circle, and dark shaded circle represent the sequences, typical

set, and set of best sequences in Xn, respectively. Theorem 1 suggests that if

X∗εn and Cδ (Pn) intersect by policy improvement, as illustrated in Figure 2, then

Pn (X∗εn) tends toward a positive probability. Intuitively, this means that it is pos-

sible for the agent to achieve RM. Thus, RM based on the AEP does not rely on

Markovianity, stationarity, or ergodicity to be satisfied.

Corollary 1 gives an example of RM with the set of best sequences.

Corollary 1. If the set of best sequences is given by

X∗εn def.
= Cε

(
P∗n

)
, (53)

and Pn satisfies the following properties:

1. Pn has the AEP, and

2. there exist κ ∈ R+, σ ∈ R+, and n0 ∈ N such that for all n0 ≤ n,

max
x∈Xn

∣∣∣ Pn(x) − P∗n(x)
∣∣∣ ≤ κ exp(−σn), (54)
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where

σ > (1 + ε)
(
log �{ S } + log �{A } + log �{ R }) , (55)

then RM holds.

Proof. The probability of the typical set of Pn is bounded by

�{Cε (Pn) } exp (−(1 + ε)H (Pn)) < Pn (Cε (Pn)) ≤ 1, (56)

where �{Cε (Pn) } denotes the number of elements in the typical set. Meanwhile,

from (Cover & Thomas, 2006, Theorem 2.6.4), the entropy of Pn is bounded by

H (Pn) ≤ log �{ S } + nl, (57)

where l is a constant given by

l
def.
= log �{ S } + log �{A } + log �{ R }. (58)

For all x ∈ Xn and a sufficiently large n, we have

Pn (Cε (Pn)) ≤ P∗n (Cε (Pn)) + κ�{Cε (Pn) } exp (−σn) , (59)

≤ P∗n (Cε (Pn)) + exp
(
n ((1 + ε) l − σ) + (1 + ε) log �{ S } + log κ

)
,

(60)

where the first inequality is derived from the second property of Pn, and the second

one is given by the bounds (56) and (57). Since

lim
n→∞ Pn (Cε (Pn)) = 1, (61)

and

lim
n→∞ exp

(
n ((1 + ε) l − σ) + (1 + ε) log �{ S } + log κ

)
= 0, (62)
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we obtain

lim
n→∞ P∗n (Cε (Pn)) = 1. (63)

Since P∗n (Cε (Pn)) ≤ P∗n
(X∗εn) holds, we have

lim
n→∞ P∗n

(X∗εn) = 1. (64)

These equations yield

lim
n→∞Cε (Pn) = lim

n→∞X
∗
ε

n, (65)

and thus we reach the conclusion.

This suggests that if the conditions in Corollary 1 are satisfied by a learning

algorithm, then RM holds in terms of the set of best sequences.

According to Theorem 1, the AEP is a necessary condition for RM. Hence, in

the rest of this section, we describe it in more detail. We readily obtain Corollary 2

by following (Verdú & Han, 1997).

Corollary 2. Pn satisfies

H (P∞) = H (P∞) , (66)

if and only if Pn has the AEP.

Equation (66) is called the strong converse property (Han, 2003). It is well

known in information theory that probability measures with the strong converse

property are more general than stationary ergodic probability measures; that is,

stationary ergodic probability measures have the property. Interestingly, this im-

plies that there are more general SDPs than stationary ergodic MDPs, such that

RM holds.

Recall that in an episodic task, the sequence of Xn is sampled repeatedly. As

Corollary 2 is stated in terms of Pn, we develop it further in Theorem 2 so that it
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is described in terms of Pn
θ for all θ ∈ Θn. This is convenient to obtain available

knowledge on what form SDPs
{
Xn
θ | θ ∈ Θn

}
should take for RM, since the agent

can observe sequences drawn according to Pn
θ by giving an outcome θ ∈ Θn, rather

than sequences drawn directly according to Pn.

Theorem 2. We identify the following three properties of Pn.

1. For all θ ∈ Θ∞ where dy∞(θ) > 0,

H
(
P∞θ

)
= H

(
P∞θ

)
. (67)

2. For all θ1, θ2 ∈ Θ∞ where dy∞(θ1) > 0 and dy∞(θ2) > 0,

H
(
P∞θ1

)
= H

(
P∞θ2

)
,

H
(
P∞θ1

)
= H

(
P∞θ2

)
.

(68)

3. For all θ1, θ2 ∈ Θn where dyn(θ1) > 0 and dyn(θ2) > 0,

lim
n→∞

∑
x∈Xn

∣∣∣ Pn
θ1

(x) − Pn
θ2

(x)
∣∣∣ = 0. (69)

Pn has properties 1 and 2 if and only if it has the AEP. Furthermore, if Pn has

properties 1 and 3, then it also has the AEP.

Proof. Assume first that Pn has properties 1 and 2. Then, we obtain

H (P∞) = sup
{

H
(
P∞θ

) | dy∞(θ) > 0
}
, (70)

H (P∞) = inf
{

H
(
P∞θ

) | dy∞(θ) > 0
}
. (71)

Hence, for all θ ∈ Θ∞ where dy∞(θ) > 0,

H (P∞) ≥ H
(
P∞θ

) ≥ H
(
P∞θ

) ≥ H (P∞) . (72)
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Figure 3: Difference in entropy spectrum. The left and right figures show entropy spectra for Pn

with properties 2 and 3, respectively.

Equations (67) and (68) yield

H (P∞) = H
(
P∞θ

)
= H

(
P∞θ

)
= H (P∞) , (73)

and by Corollary 2, the AEP holds.

Conversely, assume that Pn has the AEP. From Corollary 2, we have Equation

(66). From Equation (72), this can be rewritten as Equation (73), and properties 1

and 2 follow from Equation (73).

The second assertion follows immediately from (Han, 2003, Corollary 2.1.1).

Clearly, property 3 is a stronger condition on Pn than property 2. Figure 3

illustrates the difference in the entropy spectrum for properties 2 and 3. We see

from Theorem 2 that Pn
θ is allowed to have a spectrum when n < ∞.

If an SDP is defined by Pn, which has a certain property, we say that the SDP

has the property or refer to the SDP with the property. Theorem 1 states that RL

applications must be designed in such a way that their SDPs have properties 1

and 2, otherwise RM does not hold. Although the following proposition is almost
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obvious, its proof provides a specific example of SDPs with properties 1 and 3.

Proposition 1. SDPs with properties 1 and 3 are more general than stationary

MDPs that are ergodic on S and S ×A.

Proof. It is obvious that the stationary ergodic MDPs on S and S×A have prop-

erty 1. Accordingly, we show that they have property 3. As described in Section 3,

θ(t) is not time-dependent in the stationary ergodic MDPs on S and S × A, and

hence there exists a unique vector θ̄ ∈ Θ, such that θ(t) = θ̄ for all t ∈ N. In this

case, for all n ∈ N,

dyn(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if θ = (θ̄, . . . , θ̄) ∈ Θn,

0 otherwise.
(74)

Accordingly, letting θ1 = θ2 = (θ̄, . . . , θ̄) ∈ Θn in Equation (69) ensures that

property 3 holds.

Figure 4 summarizes the relationship among the stationary ergodic MDPs on

S and S × A, SDPs with properties 1 and 3, and SDPs with properties 1 and 2

(i.e., having the AEP). Again, we should note that Theorem 1 states that an SDP

arising in RL must be one of the SDPs with the AEP for RM.

5. Discussion and Summary

Every state-action-reward sequence is classified, not only as a typical or un-

typical sequence, but also based on whether it is a best sequence. We have defined

RM using the overlap of the typical and best sequence sets. This is substantially

different from the existing RL literature. This view of classifying sequences is
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Figure 4: Classes of SDPs.

fairly normal in information theory, but not in RL. Thus, by building a bridge be-

tween RL and information theory, we have provided the first step for advancing

RL theory in general SDPs.

In this paper, we elucidated an AEP-based analysis of RM in RL. Our analysis

does not assume Markovianity, stationarity, or ergodicity of the SDPs. The AEP

is an important property because it is a necessary condition for RM in general

SDPs. Accordingly, it should be taken fully into account when considering appli-

cations of RL or their design thereof. We have also shown several examples of

best sequences in terms of RM.

It is an important future task to find an algorithm that assures RM in an SDP

with the AEP. Then, AEP-analysis might provide a reason why RL applications

such as robot learning, sometimes work well even in more general SDPs than

MDPs, as reported in the literature. Since the AEP-based view liberates RL appli-

cations from the Markovianity, stationarity, or ergodicity assumptions, adopting

it for the description of application optimality should be fruitful. Finally, Defini-

tion 3 is a reasonable RM definition in the information-theoretic sense and implies

that we can focus on those SDPs with the AEP. Accordingly, other definitions can

be used for general SDPs, although analyses based thereon remain as open issues.
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